dots-of-war/files/.xmonad/lib/MultiColumns.hs

183 lines
7.4 KiB
Haskell

{-# LANGUAGE FlexibleInstances, MultiParamTypeClasses #-}
-----------------------------------------------------------------------------
-- |
-- Module : XMonad.Layout.MultiColumns
-- Copyright : (c) Anders Engstrom <ankaan@gmail.com>
-- License : BSD3-style (see LICENSE)
--
-- Maintainer : Anders Engstrom <ankaan@gmail.com>
-- Stability : unstable
-- Portability : unportable
--
-- This layout tiles windows in a growing number of columns. The number of
-- windows in each column can be controlled by messages.
-----------------------------------------------------------------------------
module MultiColumns (
-- * Usage
-- $usage
multiCol,
MultiCol,
) where
import XMonad
import qualified XMonad.StackSet as W
import Control.Monad
-- $usage
-- You can use this module with the following in your @~\/.xmonad\/xmonad.hs@:
--
-- > import XMonad.Layout.MultiColumns
--
-- Then edit your @layoutHook@ by adding the multiCol layout:
--
-- > myLayouts = multiCol [1] 4 0.01 0.5 ||| etc..
-- > main = xmonad def { layoutHook = myLayouts }
--
-- Or alternatively:
--
-- > myLayouts = Mirror (multiCol [1] 2 0.01 (-0.25)) ||| etc..
-- > main = xmonad def { layoutHook = myLayouts }
--
-- The maximum number of windows in a column can be controlled using the
-- IncMasterN messages and the column containing the focused window will be
-- modified. If the value is 0, all remaining windows will be placed in that
-- column when all columns before that has been filled.
--
-- The size can be set to between 1 and -0.5. If the value is positive, the
-- master column will be of that size. The rest of the screen is split among
-- the other columns. But if the size is negative, it instead indicates the
-- size of all non-master columns and the master column will cover the rest of
-- the screen. If the master column would become smaller than the other
-- columns, the screen is instead split equally among all columns. Therefore,
-- if equal size among all columns are desired, set the size to -0.5.
--
-- For more detailed instructions on editing the layoutHook see:
--
-- "XMonad.Doc.Extending#Editing_the_layout_hook"
-- | Layout constructor.
multiCol
:: [Int] -- ^ Windows in each column, starting with master. Set to 0 to catch the rest.
-> Int -- ^ Default value for all following columns.
-> Rational -- ^ How much to change size each time.
-> MultiCol a
multiCol n defn ds = MultiCol (map (max 0) n) (max 0 defn) ds [0.25, 0.25, 0.25, 0.25] 0
data MultiCol a = MultiCol
{ multiColNWin :: ![Int]
, multiColDefWin :: !Int
, multiColDeltaSize :: !Rational
, multiColSize :: ![Rational]
, multiColActive :: !Int
} deriving (Show,Read,Eq)
instance LayoutClass MultiCol a where
doLayout l r s = return (combine s rlist, resl)
where rlist = doL (multiColSize l') (multiColNWin l') r wlen
wlen = length $ W.integrate s
-- Make sure the list of columns is big enough and update active column
nw = multiColNWin l ++ repeat (multiColDefWin l)
newMultiColNWin = take (max (length $ multiColNWin l) $ getCol (wlen-1) nw + 1) nw
newColCnt = length newMultiColNWin - length (multiColNWin l)
l' = l { multiColNWin = newMultiColNWin
, multiColActive = getCol (length $ W.up s) nw
, multiColSize = if newColCnt >= 0 then normalizeFractions $ multiColSize l ++ replicate newColCnt 0.5
else normalizeFractions $ reverse . drop (abs newColCnt) $ reverse (multiColSize l)
}
-- Only return new layout if it has been modified
resl = if l'==l
then Nothing
else Just l'
combine (W.Stack foc left right) rs = zip (foc : reverse left ++ right) $ raiseFocused (length left) rs
handleMessage l m =
return $ msum [ fmap resize (fromMessage m)
, fmap incmastern (fromMessage m) ]
where
resize Shrink = l { multiColSize = changeFractionAt (\x -> x - delta) activeCol (multiColSize l)}
resize Expand = l { multiColSize = changeFractionAt (+ delta) activeCol (multiColSize l)}
--resize Shrink = l { multiColSize = max (-0.5) $ s-ds }
--resize Expand = l { multiColSize = min 1 $ s+ds }
incmastern (IncMasterN x) = l { multiColNWin = take activeCol n ++ [newval] ++ tail r }
where newval = max 0 $ head r + x
r = drop activeCol n
n = multiColNWin l
delta = multiColDeltaSize l
activeCol = multiColActive l
description _ = "MultiCol"
raiseFocused :: Int -> [a] -> [a]
raiseFocused n xs = actual ++ before ++ after
where (before,rest) = splitAt n xs
(actual,after) = splitAt 1 rest
-- | Get which column a window is in, starting at 0.
getCol :: Int -> [Int] -> Int
getCol w (n:ns) = if n<1 || w < n
then 0
else 1 + getCol (w-n) ns
-- Should never occur...
getCol _ _ = -1
doL :: [Rational] -> [Int] -> Rectangle -> Int -> [Rectangle]
doL ratios nwin r n = rlist
where -- Number of columns to tile
ncol = getCol (n-1) nwin + 1
-- Compute the actual size
--size = floor $ abs s * fromIntegral (rect_width r)
-- Extract all but last column to tile
c = take (ncol-1) nwin
-- Compute number of windows in last column and add it to the others
col = c ++ [n-sum c]
-- Compute width of columns
--width = if s>0
--then if ncol==1
---- Only one window
--then [fromIntegral $ rect_width r]
---- Give the master it's space and split the rest equally for the other columns
--else size:replicate (ncol-1) ((fromIntegral (rect_width r) - size) `div` (ncol-1))
--else if fromIntegral ncol * abs s >= 1
---- Split equally
--then replicate ncol $ fromIntegral (rect_width r) `div` ncol
---- Let the master cover what is left...
--else (fromIntegral (rect_width r) - (ncol-1)*size):replicate (ncol-1) size
-- Compute the horizontal position of columns
xpos = accumEx (fromIntegral $ rect_x r) width
-- Exclusive accumulation
accumEx a (x:xs) = a:accumEx (a+x) xs
accumEx _ _ = []
-- Create a rectangle for each column
cr = zipWith (\x w -> r { rect_x=floor x, rect_width=floor w }) xpos width
-- Split the columns into the windows
rlist = concat $ zipWith splitVertically col cr
width = map (fromIntegral rw *) ratios
where Rectangle _ _ rw _ = r
normalizeFractions :: Fractional a => [a] -> [a]
normalizeFractions list = map (/ total) list
where total = sum list
changeFractionAt :: Fractional a => (a -> a) -> Int -> [a] -> [a]
changeFractionAt update idx list = normalizeFractions $ updateAt update idx (normalizeFractions list)
updateAt :: (a -> a) -> Int -> [a] -> [a]
updateAt _ _ [] = []
updateAt f 0 (x:xs) = f x : xs
updateAt f n (x:xs) = x : updateAt f (n - 1) xs